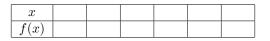
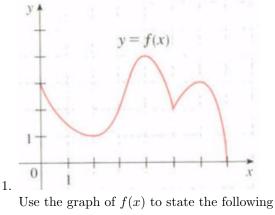

Definitions


Absolute Extrema: refers to the maximum and minimum values of a function in a specified interval.

Extreme Value Theorem: (Max-Min Existence) If f is **continuous** on a **closed** interval [a, b], then f attains both a maximum and minimum value there.


Procedure

- 1. Find the derivative of the function.
- 2. Find the critical numbers: Any value of x where f'(x) = 0 or DNE
- 3. Create a table of *candidates* containing:
 - (a) The x values found in step 2, next to their corresponding f(x) value.
 - (b) The end points (the a and b value of [a, b] and their f(a) and f(b) value)
 - (c) NOTHING ELSE

4. Identify the absolute maximum and minimum of the stated interval by comparing their f(x)-values. The maximum or minimum value can exist at the endpoints ONLY IF the stated interval is closed [a, b].

Examples

- (a) absolute maximum and absolute minimum value
- (b) local maximum and minimum value(s).
- 2. (a) Find the maximum/minimum values of the function $f(x) = x^3 3x^2 9x + 4$ in the interval [-4, 2].

- (b) Consider the open interval (-4, 2). Would your results change?
- 3. (a) Find the maximum/minimum values of the function $f(x) = x^2 + \frac{2}{x}$ in the interval $[\frac{1}{2}, 2]$. $\frac{x}{f(x)}$
 - (b) Consider the open interval $(\frac{1}{2}, 2)$. Would your results change?

Practice

Determine the absolute maximum and absolute minimum value over the stated interval by applying the Extreme Value Theorem.

1. $f(x) = x^2 + 4x + 4$ on the interval [-4, 0]

2. $f(x) = x^2 + 3x$ on the interval [-2, 1]

3. $f(x) = x^3 - 3x + 1$ on the interval $\left(-\frac{3}{2}, 3\right)$

4. $f(x) = x^3 - 3x^2$ on the interval [-1, 3]

5.
$$f(x) = x^3 - 12x$$
 on the interval (0,4)

6.
$$f(x) = \frac{x}{x-2}$$
 on the interval [3, 5]

7.
$$f(x) = \frac{1}{x}$$
 on the interval $[-1,3]$

8.
$$f(x) = \frac{1}{1+x^2}$$
 on the interval (-3,3)

9. $f(x) = \sqrt[3]{x}$ on the interval [-1, 27]

10. $f(x) = \sqrt{9-x^2}$ on the interval [-1,2]